Introduction

Model setup Stochastic Perron's method and HJBI equation Ergodicity Conclusion

Robust feedback switching control

Erhan BAYRAKTAR*

*University of Michigan

Based on joint works with

Huyen PHAM, University Paris Diderot, LPMA Andrea COSSO, University Paris Diderot

ICERM, Brown University, June 22, 2017

Switching control

• Switching control : sequence of *interventions* $(\iota_n)_n$ that occur at *random times* $(\tau_n)_n$ due to switching costs, and naturally arises in investment problems with fixed transaction costs or in real options.

- Standard approach :
 - **open-loop** (\neq closed-loop) control
 - give the evolution for the controlled state process, with *assigned* drift and diffusion coefficients.
- In practice, the coefficients are obtained through estimation procedures and are unlikely to coincide with the *real* coefficients.
- *Robust approach :* switching control problem *robust* to a misspecification of the model for the controlled state process.

Robust/Game formulation

- We formulate the problem as a **game :** switcher *vs* nature (model uncertainty).
- ▶ We consider the *two-step optimization* problem

$$\sup_{\alpha} \left(\inf_{\boldsymbol{v}} J(\alpha, \boldsymbol{v}) \right).$$

• What definition for the switching control α and for υ ?

∃ ⊳

Feedback formulation

- Elliott-Kalton formulation (Fleming-Souganidis 89) :
 - α non-anticipative strategy and v open-loop control, i.e. the switcher knows the current and past choices made by nature
 - In practice, the switcher only knows the evolution of the state process.

► Feedback formulation

- α feedback switching control (closed-loop control) \implies feedback formulation of the switching control problem.
- v open-loop control (nature is aware of the all information at disposal) \leftrightarrow Knightian uncertainty
- \rightarrow zero-sum control/control game but not symmetric

Outline

2 Stochastic Perron's method and Hamilton-Jacobi-Bellman-Isaacs equation

< ∃→

Outline

2 Stochastic Perron's method and Hamilton-Jacobi-Bellman-Isaacs equation

< 注 > < 注 >

э

Robust feedback switching system

• Fixed $(\Omega, \mathcal{F}, \mathbb{P})$, T > 0, and W a *d*-dimensional Brownian motion.

For any $(s, x, i) \in [0, T] \times \mathbb{R}^d \times \mathbb{I}_m$, consider the system on $\mathbb{R}^d \times \mathbb{I}_m$, with $\mathbb{I}_m = \{1, \ldots, m\}$ the set of regimes :

$$\begin{cases} X_{t} = x + \int_{s}^{t} b(X_{r}, I_{r}, v_{r}) dr + \int_{s}^{t} \sigma(X_{r}, I_{r}, v_{r}) dW_{r}, & s \leq t \leq T, \\ I_{t} = i \mathbb{1}_{\{s \leq t < \tau_{0}(X_{\cdot}, I_{\cdot-})\}} \\ & + \sum_{n \in \mathbb{N}} \iota_{n}(X_{\cdot}, I_{\cdot-}) \mathbb{1}_{\{\tau_{n}(X_{\cdot}, I_{\cdot-}) \leq t < \tau_{n+1}(X_{\cdot}, I_{\cdot-})\}}, & s \leq t < T, \\ I_{s^{-}} = I_{s}, I_{T} = I_{T^{-}}. \end{cases}$$

► $v: [s, T] \times \Omega \rightarrow U$ is an open-loop control adapted to a filtration $\mathbb{F}^{s} = (\mathcal{F}_{t}^{s})_{t \geq s}$ satisfying the usual conditions.

• U compact metric space.

 $\mathcal{U}_{s,s}$: class of all open-loop controls starting at s.

(E) < E)</p>

Feedback switching controls

- $\mathscr{L}([s, T]; \mathbb{I}_m)$ space of **càglàd** paths valued in \mathbb{I}_m .
- $\mathbb{B}^{s} = (\mathcal{B}^{s}_{t})_{t \in [s,T]}$ natural filtration of $C([s,T]; \mathbb{R}^{d}) \times \mathscr{L}([s,T]; \mathbb{I}_{m})$.
- \mathcal{T}^s family of all \mathbb{B}^s -stopping times valued in [s, T].
- ▶ Feedback switching control $\alpha = (\tau_n, \iota_n)_{n \in \mathbb{N}}$ where :
 - Switching times : $au_n \in \mathcal{T}^s$ and

 $s \leqslant \tau_0 \leqslant \cdots \leqslant \tau_n \leqslant \cdots \leqslant T.$

• Interventions : ι_n : $C([s, T]; \mathbb{R}^d) \times \mathscr{L}([s, T]; \mathbb{I}_m) \to \mathbb{I}_m$ is $\mathcal{B}^s_{\tau_n}$ -measurable, for any $n \in \mathbb{N}$.

▶ $A_{s,s}$: class of all feedback switching controls starting at *s*.

A E > A E >

Existence and uniqueness result

(H1) b and σ jointly continuous on $\mathbb{R}^d \times \mathbb{I}_m \times U$ and

$$|b(x,i,u)-b(x',i,u)|+\|\sigma(x,i,u)-\sigma(x',i,u)\| \leq L|x-x'|.$$

Proposition

Let **(H1)** hold. Then, for every $(s, x, i) \in [0, T] \times \mathbb{R}^d \times \mathbb{I}_m$, $\alpha \in \mathcal{A}_{s,s}$, $\upsilon \in \mathcal{U}_{s,s}$, there exists a unique \mathbb{F}^s -adapted solution $(X_t^{s,x,i;\alpha,u}, l_t^{s,x,i;\alpha,u})_{t \in [s,T]}$ to the feedback system, satisfying :

• Every path of $(X^{s,x,i;\alpha,\upsilon}_{\cdot}, I^{s,x,i;\alpha,\upsilon}_{\cdot-})$ belongs to $C([s, T]; \mathbb{R}^d) \times \mathscr{L}([s, T]; \mathbb{I}_m).$

• For any $p \ge 1$ there exists a positive constant $C_{p,T}$ such that

$$\mathbb{E}\Big[\sup_{t\in[s,T]}|X_t^{s,x,i;\alpha,\upsilon}|^p\Big] \leqslant C_{p,T}(1+|x|^p).$$

Value function of robust switching control problem

Feedback control/open-loop control game :

$$V(s,x,i) := \sup_{\alpha \in \mathcal{A}_{s,s}} \inf_{\upsilon \in \mathcal{U}_{s,s}} J(s,x,i;\alpha,\upsilon), \quad \forall (s,x,i) \in [0,T] \times \mathbb{R}^d \times \mathbb{I}_m,$$

with

$$J(s, x, i; \alpha, v) := \mathbb{E} \bigg[\int_{s}^{T} f(X_{r}^{s, x, i; \alpha, v}, I_{r}^{s, x, i; \alpha, v}, v_{r}) dr \\ + g(X_{T}^{s, x, i; \alpha, v}, I_{T}^{s, x, i; \alpha, v}) \\ - \sum_{n \in \mathbb{N}} c(X_{\tau_{n}}^{s, x, i; \alpha, v}, I_{\tau_{n}}^{s, x, i; \alpha, v}, I_{\tau_{n}}^{s, x, i; \alpha, v}) \mathbf{1}_{\{s \leq \tau_{n} < T\}} \bigg],$$

where τ^{n} stands for $\tau^{n}(X^{s,x,i;\alpha,\upsilon}, I^{s,x,i;\alpha,\upsilon}_{.-})$.

- E - N

Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation

$$\begin{cases} \min\left\{-\frac{\partial V}{\partial t}(s,x,i) - \inf_{u \in U} \left[\mathcal{L}^{i,u} V(s,x,i) + f(x,i,u)\right], \\ V(s,x,i) - \max_{j \neq i} \left[V(s,x,j) - c(x,i,j)\right]\right\} = 0, \quad [0,T) \times \mathbb{R}^d \times \mathbb{I}_m \\ V(T,x,i) = g(x,i), \quad (x,i) \in \mathbb{R}^d \times \mathbb{I}_m, \end{cases}$$

where

$$\mathcal{L}^{i,\boldsymbol{u}}V(\boldsymbol{s},\boldsymbol{x},\boldsymbol{i}) = b(\boldsymbol{x},\boldsymbol{i},\boldsymbol{u}).D_{\boldsymbol{x}}V(\boldsymbol{s},\boldsymbol{x},\boldsymbol{i}) + \frac{1}{2}\mathrm{tr}\big[\sigma\sigma^{\mathsf{T}}(\boldsymbol{x},\boldsymbol{i},\boldsymbol{u})D_{\boldsymbol{x}}^{2}V(\boldsymbol{s},\boldsymbol{x},\boldsymbol{i})\big].$$

► First aim : prove that V is a viscosity solution to the dynamic programming HJBI equation :

• by stochastic Perron method : avoiding the direct proof of Dynamic Programming Principle (DPP)

B K 4 B K

Outline

2 Stochastic Perron's method and Hamilton-Jacobi-Bellman-Isaacs equation

Erhan BAYRAKTAR Robust feedback switching control

- ∢ ≣ →

E >

э

Stochastic Perron : main idea

Developed in a series of papers by B. and Sirbu

- Define **stochastic sub and super-solutions** as functions that satisfy (roughly) half of the DPP
- \blacktriangleright with these definitions, sub and super-solutions envelope the value function
- Consider sup of sub-solutions and inf of super-solutions (Perron) :

 v^- := sup of sub-solutions $\,\leqslant\,\, V\,\,\leqslant\,\, v^+\,$:= inf of super-solutions

▶ Show that v^- is a viscosity super-solution and v^+ is a viscosity sub-solution.

 \bullet Comparison principle \rightarrow

 $v^- = V = v^+$ is the unique continuous viscosity solution.

and (as a byproduct) V satisfies the DPP

(本語) (本語) (語)

Some comments

- Stochastic semi-solutions have to be carefully defined (depending on the control problem) \rightarrow constructive proof for the existence of a viscosity solution comparing with the value function
 - linear, control, optimal stopping problems (Bayraktar-Sirbu, 12, 13, 14.)

Stochastic semisolutions

Definition (Stochastic subsolutions \mathcal{V}^-)

v stochastic subsolution to the HJBI equation if :

- v is continuous, $v(T, x, i) \leq g(x, i)$ for any $(x, i) \in \mathbb{R}^d \times \mathbb{I}_m$, and $\sup_{(s,x,i)\in[0,T]\times\mathbb{R}^d\times\mathbb{I}_m} \frac{|v(s,x,i)|}{1+|x|^q} < \infty$, for some $q \ge 1$.
- Half-DPP property. For any $s \in [0, T]$ and $\tau, \rho \in \mathcal{T}^s$ with $\tau \leq \rho \leq T$, there exists $\widetilde{\alpha} = (\widetilde{\tau}_n, \widetilde{\iota}_n)_{n \in \mathbb{N}} \in \mathcal{A}_{s,\tau^+}$ such that, for any $\alpha = (\tau_n, \iota_n)_{n \in \mathbb{N}} \in \mathcal{A}_{s,s}, v \in \mathcal{U}_{s,s}$, and $(x, i) \in \mathbb{R}^d \times \mathbb{I}_m$, we have $v(\tau', X_{\tau'}, I_{\tau'}) \leq \mathbb{E} \left[\int_{\tau'}^{\rho'} f(X_t, I_t, v_t) dt + v(\rho', X_{\rho'}, I_{\rho'}) - \sum_{n \in \mathbb{N}} c(X_{\widetilde{\tau}'_n}, I_{(\widetilde{\tau}'_n)^-}, I_{\widetilde{\tau}'_n}) \mathbb{1}_{\{\tau' \leq \widetilde{\tau}'_n < \rho'\}} \middle| \mathcal{F}^s_{\tau'} \right]$

with the shorthands $X = X^{s,x,i;\alpha \otimes_{\tau} \widetilde{\alpha},v}$, $I = I^{s,x,i;\alpha \otimes_{\tau} \widetilde{\alpha},v}$.

▶ The set of *stochastic supersolutions* \mathcal{V}^+ is defined similarly.

Stochastic Perron's method : assumptions

(H2)

- (i) g, f, c are jointly continuous on their domains.
- (ii) c is nonnegative.
- (iii) g, f, c satisfy the polynomial growth condition :

$$|g(x,i)| + |f(x,i,u)| + |c(x,i,j)| \le M(1+|x|^p),$$

 $\forall x \in \mathbb{R}^d$, $i, j \in \mathbb{I}_m$, $u \in U$, for some positive constants M and $p \ge 1$. (iv) g satisfies

$$g(x,i) \geq \max_{\substack{j\neq i}} [g(x,j)-c(x,i,j)],$$

for any $x \in \mathbb{R}^d$ and $i \in \mathbb{I}_m$.

-∢ ⊒ ▶

Stochastic Perron's method

Proposition

Let Assumptions (H1) and (H2) hold.

- (i) $\mathcal{V}^- \neq \emptyset$ and $\mathcal{V}^+ \neq \emptyset$.
- (ii) $\sup_{v \in \mathcal{V}^-} v =: v^- \leqslant V \leqslant v^+ := \inf_{v \in \mathcal{V}^+} v.$
- (iii) If $v^1, v^2 \in \mathcal{V}^-$ then $v := v^1 \lor v^2 \in \mathcal{V}^-$. Moreover, there exists a nondecreasing sequence $(v_n)_n \subset \mathcal{V}^-$ such that $v_n \nearrow v^-$.
- (iv) If $v^1, v^2 \in \mathcal{V}^+$ then $v := v^1 \wedge v^2 \in \mathcal{V}^+$. Moreover, there exists a nonincreasing sequence $(v_n)_n \subset \mathcal{V}^+$ such that $v_n \searrow v^+$.

Theorem [Stochastic Perron's method]

Let Assumptions **(H1)** and **(H2)** hold. Then, v^- is a viscosity supersolution to the HJBI equation and v^+ is a viscosity subsolution to the HJB equation.

Comparison principle

(H3) c satisfies the no free loop property : for any sequence of indices $i_1, \ldots, i_k \in \mathbb{I}_m$, with $k \in \mathbb{N} \setminus \{0, 1, 2\}$, $i_1 = i_k$, and $\operatorname{card}\{i_1, \ldots, i_k\} = k - 1$, we have

 $c(x, i_1, i_2) + c(x, i_2, i_3) + \cdots + c(x, i_{k-1}, i_k) + c(x, i_k, i_1) > 0.$

We also assume : c(x, i, i) = 0, $\forall (x, i) \in \mathbb{R}^d \times \mathbb{I}_m$.

Theorem [Comparison principle]

Let Assumptions (H1), (H2), (H3) hold and consider a viscosity subsolution u (resp. supersolution v) to the HJB equation. Suppose that, for some $q \ge 1$,

$$\sup_{\substack{(t,x,i)\in[0,T]\times\mathbb{R}^d\times\mathbb{I}_m}}\frac{|u(t,x,i)|+|v(t,x,i)|}{1+|x|^q} < \infty.$$

Then, $u \leq v$ on $[0, T] \times \mathbb{R}^d \times \mathbb{I}_m$.

Dynamic programming and viscosity properties

Theorem

Let Assumptions (H1), (H2), (H3) hold. Then, the value function V is the unique viscosity solution to the HJB equation and satisfies the dynamic programming principle : for any $(s, x, i) \in [0, T] \times \mathbb{R}^d \times \mathbb{I}_m$ and $\rho \in \mathcal{T}^s$,

$$V(s,x,i) = \sup_{\alpha \in \mathcal{A}_{s,s}} \inf_{\upsilon \in \mathcal{U}_{s,s}} \mathbb{E} \bigg[\int_{s}^{\rho'} f(X_t, I_t, \upsilon_t) dt + V(\rho', X_{\rho'}, I_{\rho'}) \\ - \sum_{n \in \mathbb{N}} c(X_{\tau'_n}, I_{(\tau'_n)^-}, I_{\tau'_n}) \mathbb{1}_{\{s \leq \tau'_n < \rho'\}} \bigg],$$

with the shorthands $X = X^{s,x,i;\alpha,\upsilon}$, $I = I^{s,x,i;\alpha,\upsilon}$, $\rho' = \rho(X, I_{-})$, $\tau'_n = \tau_n(X, I_{-})$, and $\upsilon'_t = \upsilon(t, X, I_{-})$.

* @ ト * ヨ ト * ヨ ト

Comparison with the Elliott-Kalton formulation

- In general $V \leq V^{\text{Kalton}}$.
- And if comparison principle holds we have equality. BUT, intrinsically they are different problems and two formulations lead to two different solutions of the variational HJB.
- We have an example with $c \equiv 0$ (hence the no-free loop is violated), where each formulation leads to different solutions of the variational HJB : $V < V^{\text{Kalton}}$
- Since $c \equiv 0$ this actually can be reformulated as a classical zero-sum game
 - V is the solution to the lower Isaacs equation.
 - V^{Kalton} is the solution to the upper Isaacs equation.
 - The Isaacs condition does not hold.

- E - E

Outline

2 Stochastic Perron's method and Hamilton-Jacobi-Bellman-Isaacs equation

< ≣⇒

э

Problem

Forward parabolic system of variational inequalities :

$$\begin{cases} \min\left\{\frac{\partial V}{\partial T} - \inf_{u \in U} \left[\mathcal{L}^{i,u}V + f(x, i, u)\right], \\ V(T, x, i) - \max_{j \neq i} \left[V(T, x, j) - c(x, i, j)\right]\right\} = 0, (0, \infty) \times \mathbb{R}^{d} \times \mathbb{I}_{m} \\ V(0, x, i) = g(x, i), \qquad (x, i) \in \mathbb{R}^{d} \times \mathbb{I}_{m} \end{cases}$$

- Long time asymptotics of $V(T, \cdot, \cdot)$ as $T \to \infty$:
- Stationary solution of robust feedback switching control
- Literature on ergodic stochastic control : Switching (Lions, Perthame (86), Menaldi, Perthame, Robin (90)), Stochastic control (Bensoussan, Frehse (92); Arisawa, P.L. Lions (98)).
- More recently Lions' College de France lectures, Ichihara, Ishii (08), Fuhrman, Hu and Tessitore (09), Ichihara (2012), Robertson, Xing (15)...
- under non degeneracy condition and/or regularity of value function and very few on games !

Some heuristics and principles

• We expect to prove (under suitable conditions) that

$$rac{V(\mathcal{T}, x, i)}{\mathcal{T}} o \lambda$$
 (const. independent of x,i) as $\mathcal{T} o \infty$.

 \bullet Tauberian Meta theorem : ergodic \sim infinite horizon with vanishing discount factor, i.e.

$$\lim_{T \to \infty} \frac{V(T,.)}{T} = \lim_{\beta \to 0} \beta V^{\beta}$$

where

$$V^{\beta}(x,i) = \sup_{\alpha \in \mathcal{A}_{0,0}} \inf_{\upsilon \in \mathcal{U}_{0,0}} \mathbb{E} \bigg[\int_{0}^{\infty} e^{-\beta t} f(X_{t}^{x,i;\alpha,\upsilon}, I_{t}^{x,i;\alpha,\upsilon}, \upsilon_{t}) dt \\ - \sum_{n \in \mathbb{N}} e^{-\beta \tau_{n}} c(X_{\tau_{n}}^{x,i;\alpha,\upsilon}, I_{\tau_{n}}^{x,i;\alpha,\upsilon}, I_{\tau_{n}}^{x,i;\alpha,\upsilon}) 1_{\{\tau_{n} < \infty\}} \bigg]$$

 \leftrightarrow Elliptic system of variational inequalities :

Ergodic system of variational inequalities

• Formally, by setting $V(T, x, i) \sim \lambda T + \phi(x, i)$ as $T \to \infty$, we get the ergodic HJBI equation :

$$\min\left\{\frac{\lambda}{u\in U}\left[\mathcal{L}^{i,u}\phi+f(x,i,u)\right],\phi(x,i)-\max_{\substack{j\neq i}}\left[\phi(x,j)-c(x,i,j)\right]\right\}=0.$$

• The pair (λ, ϕ) is the unknown.

- Aim :
 - Prove existence (and uniqueness) of a solution to the ergodic HJBI

• Show :

$$\lim_{T\to\infty}\frac{V(T,x,i)}{T} = \lambda = \lim_{\beta\to 0}\beta V^{\beta}(x,i).$$

글 🕨 🖌 글 🕨

Main issues for asymptotic analysis

• Prove equicontinuity of the family $(V^{\beta})_{\beta}$: for all $\beta > 0$,

$$\begin{aligned} |V^{\beta}(x,i) - V^{\beta}(x',i)| &\leq C|x - x'|, \\ \beta |V^{\beta}(x,i)| &\leq C(1+|x|), \quad \forall \ (x,i). \end{aligned}$$

- by PDE methods from the elliptic HJBI system?
- from the robust feedback switching control representation, which would rely on an estimate of the form :

$$\sup_{\alpha \in \mathcal{A}_{0,0}, \upsilon \in \mathcal{U}_{0,0}} \mathbb{E} \left| X_t^{x,i;\alpha,\upsilon} - X_t^{x',i;\alpha,\upsilon} \right| \quad \leqslant \quad C_t |x - x'|, \quad \forall x, x', i.$$

Not clear due to the feedback form of the switching control!

Randomization of the control

Following idea of Kharroubi and Pham (13) :

$$\begin{cases} X_t = x + \int_0^t b(X_s, I_s, \Gamma_s) ds + \int_0^t \sigma(X_s, I_s, \Gamma_s) dW_s, \\ I_t = i + \int_0^t \int_{\mathbb{I}_m} (j - I_{s^-}) \pi(ds, dj), \\ \Gamma_t = u + \int_0^t \int_U (u' - \Gamma_{s^-}) \mu(ds, du'), \end{cases}$$

• π Poisson random measure on $\mathbb{R}_+ \times \mathbb{I}_m$, μ Poisson random measure on $\mathbb{R}_+ \times U$. W, π , and μ are *independent*.

► $(X^{x,i,u}, I^i, \Gamma^u)$ exogenous (uncontrolled) Markov process

- ∢ ⊒ ▶

Change of equivalent probability measures

Control of intensity measures :

• \equiv (resp. \mathcal{V}) class of *essentially bounded predictable* maps $\xi : [0, \infty) \times \Omega \times \mathbb{I}_m \to (0, \infty)$ (resp. $\nu : [0, \infty) \times \Omega \times U \to [1, \infty)$)

$$\frac{d\mathbb{P}^{\xi,\nu}}{d\mathbb{P}}\Big|_{\mathcal{F}_{\mathcal{T}}} = \mathcal{E}_{\mathcal{T}}\Big(\int_{0}^{\cdot}\int_{\mathbb{I}_{m}}(\xi_{t}(j)-1)\widetilde{\pi}(dt,dj)\Big) \cdot \mathcal{E}_{\mathcal{T}}\Big(\int_{0}^{\cdot}\int_{U}(\nu_{t}(u')-1)\widetilde{\mu}(dt,du')\Big)$$

- \blacktriangleright Under $\mathbb{P}^{\xi,\nu}$:
 - W remains a Brownian motion.
 - \mathbb{P} -compensator $\vartheta_{\pi}(di)dt$ of $\pi \longrightarrow \xi_t(i)\vartheta_{\pi}(di)dt$.
 - \mathbb{P} -compensator $\vartheta_{\mu}(du)dt$ of $\mu \longrightarrow \nu_t(u)\vartheta_{\mu}(du)dt$.
- ightarrow Easy to derive moment and Lipschitz estimates on $X^{x,i,u}$ under $\mathbb{P}^{\xi,
 u}$!

▲国社 ▲国社

Dual robust switching control

$$v^{\beta}(x,i,u) = \sup_{\xi \in \Xi} \inf_{\nu \in \mathcal{V}} \mathbb{E}^{\xi,\nu} \bigg[\int_0^\infty e^{-\beta t} f(X_t^{x,i,u}, I_t^i, \Gamma_t^u) dt \\ - \int_0^\infty \int_{\mathbb{I}_m} e^{-\beta t} c(X_{t^-}^{x,i,u}, I_{t^-}^i, j) \pi(dt, dj) \bigg],$$

for all $(x, i, u) \in \mathbb{R}^d \times \mathbb{I}_m \times U$.

> The dual problem is a symmetric game : control vs control.

Theorem

For any $\beta > 0$ and $(x, i) \in \mathbb{R}^d \times \mathbb{I}_m$,

$$v^{\beta}(x,i,u) = v^{\beta}(x,i,u'), \quad \forall u,u' \in U$$

and

$$V^{\beta}(x,i) = v^{\beta}(x,i,u), \quad \forall (x,i) \in \mathbb{R}^{d} \times \mathbb{I}_{m},$$

for any $u \in U$.

BSDE Representation of the weak control problem

$$\begin{split} Y_{t}^{\beta,n} &= Y_{T}^{\beta,n} - \beta \int_{t}^{T} Y_{s}^{\beta,n} ds + \int_{t}^{T} f(X_{s}^{x,i,u}, I_{s}^{i}, \Gamma_{s}^{u}) ds - \sum_{j=1}^{m} \int_{t}^{T} L_{s}^{\beta,n}(j) ds \\ &+ n \sum_{j=1}^{m} \int_{t}^{T} \left[L_{s}^{\beta,n}(j) - c(X_{s}^{x,i,u}, I_{s}^{i}, j) \right]^{+} ds - \left(K_{T}^{\beta,n} - K_{t}^{\beta,n} \right) \\ &- \int_{t}^{T} Z_{s}^{\beta,n} dW_{s} - \int_{t}^{T} \int_{\mathbb{I}_{m}} L_{s}^{\beta,n}(j) \widetilde{\pi}(ds, dj) - \int_{t}^{T} \int_{U} R_{s}^{\beta,n}(u') \widetilde{\mu}(ds, du'), \end{split}$$

for any $0\leqslant t\leqslant {\mathcal T}$, ${\mathcal T}\in [0,\infty)$, and

$$R_t^{\beta,n}(u') \ge 0, \qquad d\mathbb{P}\otimes dt\otimes \vartheta_\mu(du')$$
-a.e. (2)

∃ ⊳

Ergodicity under dissipativity condition

• Dissipativity condition (DC) : for all $x, x' \in \mathbb{R}^d$, $i \in \mathbb{I}_m$, $u \in U$,

$$(x - x') \cdot (b(x, i, u) - b(x', i, u)) + \frac{1}{2} \|\sigma(x, i, u) - \sigma(x', i, u)\|^2$$

$$\leq -\gamma |x - x'|^2$$

for some constant $\gamma > 0$.

$$\sup_{\xi,\nu} \mathbb{E}^{\xi,\nu} [|X_t^{x,i,u} - X_t^{x',i,u}|^2] \leqslant e^{-2\gamma t} |x - x'|^2$$
$$\sup_{t \ge 0} \sup_{\xi,\nu} \mathbb{E}^{\xi,\nu} |X_t^{x,i,u}| \leqslant C(1+|x|).$$

∃ ≥ >

Main steps of proof for existence to ergodic system

• Equicontinuity :

$$\begin{split} |V^{\beta}(x,i) - V^{\beta}(x',i)| \\ &\leq \sup_{\xi \in \Xi, \nu \in \mathcal{V}} \mathbb{E}^{\xi,\nu} \left[\int_{0}^{\infty} e^{-\beta t} |f(X_{t}^{x,i,u},I_{t}^{i},\Gamma_{t}^{u}) - f(X_{t}^{x',i,u},I_{t}^{i},\Gamma_{t}^{u})| dt \right] \\ &\leq L|x - x'| \int_{0}^{\infty} e^{-(\beta+\gamma)t} dt = \frac{L}{\beta+\gamma} |x - x'| \leq \frac{L}{\gamma} |x - x'|. \end{split}$$

• Convergence of V^{β} . Define

 $\lambda_i^{\beta} := \beta V^{\beta}(0,i), \qquad \phi^{\beta}(x,i) := V^{\beta}(x,i) - V^{\beta}(0,i_0),$

By Bolzano-Weierstrass and Ascoli-Arzelà theorems, we can find a sequence $(\beta_k)_{k\in\mathbb{N}}$, with $\beta_k\searrow 0^+$, such that

$$\lambda_i^{\beta_k} \stackrel{k \to \infty}{\longrightarrow} \lambda_i, \qquad \phi^{\beta_k}(\cdot, i) \stackrel{k \to \infty}{\underset{\text{in } C(\mathbb{R}^d)}{\longrightarrow}} \phi(\cdot, i).$$

► $\lambda := \lambda_i$ does not depend on $i \in \mathbb{I}_m$. Finally, stability results of viscosity solutions $\implies (\lambda, \phi)$ is a viscosity solution to the ergodic system.

A simple argument for large time convergence

Let (λ,ϕ) be a solution to the ergodic HJBI :

▶ ϕ is the unique viscosity solution to the parabolic HJBI equation with unknown ψ and terminal condition ϕ :

$$\begin{cases} \min\left\{-\frac{\partial\psi}{\partial t}(t,x,i) - \inf_{u \in U} \left[\mathcal{L}^{i,u}\psi(t,x,i) + f(x,i,u) - \lambda\right], \\ \psi(t,x,i) - \max_{j \neq i} \left[\psi(t,x,j) - c(x,i,j)\right]\right\} = 0, \quad (t,x,i) \in [0,T) \times \mathbb{R}^d \times \mathbb{I}_m, \\ \psi(T,x,i) = \phi(x,i), \quad (x,i) \in \mathbb{R}^d \times \mathbb{I}_m. \end{cases}$$

For any T > 0, $\phi(x, i)$ admits the dual game representation :

$$\phi(x,i) = \sup_{\xi \in \Xi} \inf_{\nu \in \mathcal{V}} \mathbb{E}^{\xi,\nu} \left[\int_0^T \left(f(X_t^{x,i,u}, I_t^i, \Gamma_t^u) - \lambda \right) dt + \phi(X_T^{x,i,u}, I_T^i) - \int_0^T \int_{\mathbb{I}_m} e^{-\beta t} c(X_{t^-}^{x,i,u}, I_{t^-}^i, j) \pi(dt, dj) \right]$$

글 🕨 🖌 글 🕨

Large time convergence (Ctd and end)

From the dual game representation for V(T,.):

$$\begin{aligned} & \left| V(T, x, i) - \lambda T - \phi(x, i) \right| \\ \leqslant & \sup_{\xi \in \Xi, \nu \in \mathcal{V}} \mathbb{E}^{\xi, \nu} \Big[\left| g(X_T^{x, i}, I_T^i) \right| + \max_j \left| \phi(X_T^{x, j}, j) \right| \Big] \\ \leqslant & C(1 + |x|^2), \end{aligned}$$

from growth condition of g, ϕ , and estimate of X under dissipativity condition.

 \implies

$$rac{V(T,x,i)}{T} o \lambda, \quad ext{as} \ T o \infty.$$

Remark. This probabilistic argument does not require any non degeneracy condition on σ , hence any regularity on value functions.

Concluding remarks

- Robust (model uncertainty) feedback switching control :
 - Non symmetric zero-sum control/control game
 - $\bullet \neq \mathsf{Elliott}\mathsf{-}\mathsf{Kalton} \text{ game formulation}$
- Stochastic Perron method
 - HJBI equation and DPP
- Ergodicity of HJBI
 - Randomization method \rightarrow dual symmetric (open loop) control/control game representation
 - No non-degeneracy condition

Main References

Erhan Bayraktar, Andrea Cosso, and Huyên Pham.

Robust feedback switching control : dynamic programming and viscosity solutions.

SIAM Journal on Control and Optimization, 54(5) :2594–2628, 2016.

Erhan Bayraktar, Andrea Cosso, and Huyên Pham.

Ergodicity of robust switching control and nonlinear system of quasi-variational inequalities.

SIAM Journal on Control and Optimization, 55(3) :1915–1953, 2017.

THANK YOU!

Erhan BAYRAKTAR Robust feedback switching control

イロト イポト イヨト イヨト

э